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This paper attempts to reconstruct and optimize a DWDM system by avoiding distortions such as Four-Wave Mixing (FWM) 
and high signal distortion due Inter-Channel Interference (ICI) using supervised and unsupervised learning approaches. 
FWM in high channel DWDM system reduces the network flexibility, transmission capacity and increases computational 
difficulties. The ICI and Signal distortion that affects spectral efficiency, increases network latency, leading to undesirable 
data re-transmission. To solve these above stated issues, the DWDM system necessitates optical variables optimization 
using supervised and unsupervised regression learning. In this paper, we reconstruct the DWDM system design using 
supervised and unsupervised regression learning approaches, which are used to identify, correlate, and optimize the FWM 
influencing optical parameters. Furthermore, trained datasets are generated from parameter-based simulations. Results are 
analyzed using supervised and unsupervised regression approaches, which improves the DWDM mechanism and achieves 
accuracy through a computerized regression model controller. Thus, the reconstructed DWDM system is re - designed with 
optimized FWM parameters obtained through supervised machine learning approaches, and unsupervised training 
evaluates the proposed R-DWDM system to predict Q-factor, OSNR, signal, and noise power levels accurately. 
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1. Introduction  
 

DWDM system in optical networks provides a high 

data rate for long-distance and ultra-speed transmissions. 

More data rate requirements with high network capacity 

introduce fiber nonlinearities, especially Four-Wave 

Mixing (FWM), in an optical DWDM network. In an 

optical fiber, the Propagation of two or more optical input 

signals in the same direction generates a new signal with 

sum and difference in their frequencies. As a result, the 

newly generated FWM signal can co-propagate with the 

input signal and causes more interference in neighbouring 

channels [1]. The occurrence of FWM in an optical 

DWDM system will cause signal distortion and introduces 

more cross-talk, which degrades DWDM network 

throughput and provides higher latency. Besides, 

parameters such as input power, channel spacing, fiber's 

core effective area, end-to-end transmission distance, data 

rate, and other fiber optic dispersive characteristics 

determine the occurrence of FWM in the DWDM system 

[2]. 

Many researchers proposes various methods and 

algorithms for analyzing and suppressing the FWM effects 

in DWDM design. FWM suppression is done through 

utilization of different dispersion characteristics of fiber 

such as non-zero dispersion shifted fiber, Reverse 

dispersion fiber, dispersion flattened fiber and highly 

nonlinear ultra-flattened dispersion shifted fiber (HN-

UFF). The dispersion characteristics based DWDM design 

is complex in terms of structure and leads to minimum 

utilization of bandwidth [3]. FWM suppress through single 

mode fiber (SMF) and results in high dispersion effects in 

the receiver [4]. Furthermore, dispersion compensation 

fiber (DCF) method reduces FWM, whereas the method 

introduces more link loss long haul fiber optic DWDM 

system [5]. The CFBG method suppresses the FWM and 

disadvantage of this method is the wavelength time delay 

[6]. Moreover, less number of channel, for a distance of 

100 km and low average Q- factor of 10.69 with minimal 

CFBGs investigate with high capacity DWDM system for 

efficient analysis [7]. 

Growth of demand over larger data rates with high 

capacity DWDM system introduces more complexity in 

design and affects the Quality of data Transmission (QoT). 

Therefore, we believe the conventional DWDM system 

combined with machine learning approaches will provide 

a practical design to reduce design complexity, accurately 

identifies the FWM influencing parameters through trained 

datasets, and improves QoT. The machine learning 

algorithms can provide more accuracy and shows the 

relationship between the optical input parameters. ML 

algorithms provide efficient design values for optical 

amplifier controls modulation format recognition, and 

optical performance monitoring [8]. ML technique is used 

to characterize and mitigate WDM's power excursion with 

1% error accuracy [9].  
Recently, in [10] regression based machine-learning 

approach is used to Predict the coupling length, effective 
index, and power confinement in nanophotonics 
waveguide analysis. Specifically, MLP regression 
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provides 1-4% of error approximation in power 
confinements, 2% of error approximation in effective 
index, and shows perform better than other machine 
learning models. In [11] author discussed Logistic 
Regression, KNN, and ANN techniques to predict the QoT 
in terms of OSNR in the presence of EDFA power 
excursions and fiber nonlinearities. These techniques 
achieve above 70% of promising decision-making 
processes of control systems and require further analysis 
for physical layer features in the optical domain to identify 
the classifier's behavioural correlation level. In [12] 
Xiaoliang Chen et al. is experimented using supervised 
regression and classification module for the detection of 
anomaly in optical networks. Module presented in 
Xiaoliang Chen 2018 [12] achieves 99% accuracy in 
anomaly detection with 1% error rate and requires further 
investigation for diverse failure detection in the optical 
network. In [13] Shumingjiao et al. analyzed linear 
regression-based machine learning for blind image 
reconstruction in single pixal imaging (SPI) for an optical 
imaging system. In [14] Mirosław Klinkowski et al. 
proposed dynamic cross-talk optimization using regression 
learning for multi-core fiber in an optical network. The 
above regression learning technique provides flexible 
modulation format selection and achieves performance 
over various computationally expensive reference 
methods. Furthermore, Sanjaya Lohani et al. discussed 
CNN based prediction of output pulse propagation from 
nonlinear dispersive medium and dispersion 
characterization that simplifies the frequency scanning 
demonstration consumes more time and difficult to 
characterize in [15]. 

In the conventional DWDM system, identifying the 

FWM influencing parameters is done through iterative 

simulations, which affects the system accuracy and QoT. 

The iterative simulations for the effective design of 

DWDM fail to provide effective utilization of higher 

bandwidth, and data rate since the optical parameters in 

the device such as data rate, channel spacing, input power, 

modulation format, and optical gain are highly influencing 

FWM. The customized design of DWDM based on real-

time environment is a challenging task. This paper 

proposed the supervised and unsupervised regression 

machine learning-based DWDM reconstruction, which 

reduces the FWM and improves QoT. Supervised 

regression-based DWDM system design avoids the 

considerable quantity of iterative calculations, which 

generally involves designing and testing an FWM 

parameters DWDM system. The proposed predictive 

modeling is customized based on identifying the optical 

independent and dependent parameters, which influences 

FWM in a fiber optic DWDM system. The independent 

and dependent parameters are classified based on R-value 

relations established between the optical parameters such 

as data rate, channel spacing, input power, modulation 

format, and optical gain. The rest of this paper is 

structured as follows. Section 2 discuss the literature 

works on FWM in fiber optic system design. Section 3 

describes the simulation and process methodology. 

Reconstruction of R-DWDM design is presented in section 

4. Some parametric discussion based on simulation results 

are presented in section 5. Comparison of simulated and 

predicted results are discussed in Section 6. Finally, 

section 7 sums up with the conclusion and future work. 

 

 

2. Literature survey 

 

The massive requirement of data rate in optical 

networks results in WDM implementation with spectral 

efficient parametric optimization. WDM technologies 

require accurate methods to reduce fiber nonlinearities and 

to meet increasing bandwidth requirements.  In [16], Jagjit 

Singh Malhotra et al. is used optical phase conjugation 

(OPC) techniques, suppressed FWM power up to -20 

dBm, which provides higher attenuation, and effectively 

mitigate FWM. In [17] R. Kaler et al. is discussed DWDM 

system design with low channel spacing and low input 

channel. Here the DWDM system design is confined 

towards channel capacity and bandwidth utilization. The 

author in [18] Jameel Ahmed et al. is presented FWM 

generation and enhancement parameters for a limited 

number of channels. However, in [19], Yaojun Qiao et al. 

is introduced a Gaussian noise model to understand the 

impact of nonlinear propagation in DMT that provides an 

accurate standard analytical model. The author in [20] 

Tonghui Liu et al. is performed an efficient FWM 

validation for channel spacing (0.1 nm) using DF-HNLF 

for short-distance communication. 

In [21], Elham Nazemosadat et al. is discussed intra 

and inter-model FWM interaction in HN-FMF. The HN-

FMF design with dual and 4-mode fiber achieves DMG of 

0.2dB with 9.5dB minimal gain and DMG of 1.51 dB with 

6.5dB minimal gain. Furthermore, in [22], Abhimanyu 

Nain et al. is analyzed the effect of FWM cross talk under 

ROF-WDM for different fibers. Here the optimization of 

channel spacing and input power for WDM system with 

LEAF is achieved. The author in [23] Sukhbir Singh et.al, 

is performed FWM suppression using optical phase 

conjugation modules in dispersion managed hybrid WDM-

OTDM multicast overlay system. Although BER 

performance and coverage distance improved upto twice 

multiple factors, intricate system design affects WDM-

OTDM performance. Critical characteristics of FWM is 

discussed in [24] Naif Alsowaidi et al. and performed 

FWM reduction using EOPM after the DWDM system. 

64-channel DWDM based IM/DD achieved BER of 10-26 

over 30 km and 70 km. In [25] Chiranjit Ghosh, et.al is 

discussed FWM suppression using LCFBG in the 22x 

10Gbps WDM system and suppress FWM at a high input 

power of 10 dBm. The author Manisha Ajmani et al. in 

[26] presented FWM mitigation using a hybrid 

combination of DCF, FBG and OPC. The combination of 

OPC and DCF has an FWM suppression power of −135 

dBm over 180 km distance. 

The work in [27] D. Uzunidis et al. is performed an 
accurate validation through closed-form formula using 
QPSK modulation format in optical WDM design for less 
than 30 km span of fiber. Habib Ullah Manzoor et al. is 
analyzed FWM mitigation in [28] using Different 
modulation format and optical filter and achieves FWM 
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efficiency of 25 dB. The author in [29] Tomas Huszanik et 
al. is mitigated FWM using the DQPSK modulation 
scheme for 32-channel Ultra-DWDM system design over 
1250 km. In [30], T. Sabapathi et al. is also Mitigates SRS 
effect and FWM using WDM design with 0dBm input 
power and circular polarizers that consume high input 
power due to high spectral transmission. Kathpal et al. in 
[2] is Achieved 4dB FWM power for Channel spacing 75 
GHZ with input source power 0dBm for 8-channeled 
DWDM. Optimizing parameters is carried out for a limited 
ROF channel. The author in [31] Jalil Aziz Hamadamin et 
al. is discussed the RZ-Modulation format to achieve Max 
Q-factor, low noise figure and low influence fiber towards 
nonlinearities. A higher data rate of 40Gbps per channel 
causes adverse effects such as high signal attenuation and 
dispersion effects. Obaid et al. in [32] is designed a 
DWDM system with 0.2 nm channel spacing, which 
provides more inter symbol interference (ISI) with 1.70 dB 
gain ripple and 4dB noise figure. 

From related Works, we observed that the presence of 
FWM in high capacity DWDM system provides inter-
channel interferences and causes more cross-talk, which 
affects network throughput and lowers energy efficiency. 
High channel DWDM consumes high power and 
introduces more signal distortions, which lowers DWDM 
system performance and increases computational 
complexity. Optimization of DWDM system parameters 
requires machine-learning techniques to predict FWM 
influencing parameters and improve data transmission 
quality.  DWDM system is a general fiber optic dense 
wavelength division multiplexing system. Whereas, R- 
DWDM system represents a regression modelled 
controller based DWDM system. The aforementioned 
system is designed using the trained data set, which is 
obtained from field trials of optical DWDM network 
comprising of 'N' number of samples of the independent 
parameters and the corresponding dependent mitigating 
factors. The R-DWDM design tunes the parameters such 
as, channel spacing, bit rate, input power and optical gain 
after analyzing the behaviour of FWM according to the 
variations in its parameters. 

This paper proposes a Regression-based DWDM (R-
DWDM) system, which uses FWM influencing 
parameters, and the proposed system is trained through 
"N" number of an iterative dataset. We develop our 
methodology by modifying the DWDM network training 
stage to combine with supervised and unsupervised 
regression learning and shows the new predicted R-
DWDM can reassign values of FWM influencing 
parameters to meet user requirements based on Q-factor, 
BER, OSNR, signal and noise power while being trained 
based on the iterative input dataset. This paper provides a 
simple, efficient structure of the DWDM system with 
High-level accuracy and reduces run computational time 
errors. Furthermore, the proposed system avoids more 
iteration and provides customized design based on real-
time field requirements. 

 
 
3. Simulation and process methodology 
 

The Concept diagram for the proposed R-DWDM 

system design at different parameters are shown in Fig. 1. 

The optical system consists of WDM transmitter, WDM 

multiplexer, SMF, Optical amplifier, Dispersion 

compensation fiber, WDM demultiplexer, photodetector, 

Bessel LPF, and BER analyzer. WDM transmitter consists 

of the parametric configurations such as 10 Gbps data rate 

at input source, channel input power -10dBm (0.1mw), 

and channel spacing of 100 GHz NRZ Modulation format. 

The transmitter performs the modulation using Light 

signals for the input data sequences. The modulated data 

sequences from the WDM transmitter pass through the 

WDM multiplexer with channel spacing of 100GHz and 

Bessel filter, as shown in Fig. 1. WDM multiplexed signal 

transmit through the single-mode fiber (SMF) of length 

100 km.  SMF consists of parameters such as dispersion 

coefficient of 16.75 ps/nm/km, attenuation coefficient of 

0.2 dB/km, dispersion slope 0.075 ps/nm^2/km, Beta2 is -

20 ps^2/km, differential group delay 0.2 ps/km and PMD 

coefficient 0.01 ps/sqr (km) are employed.  
 

 
 

Fig. 1. Concept diagram: WDM Tx: Wavelength Division Multiplexer Transmitter, SMF: Single-Mode Fiber, DCF: Dispersion 

Compensation Fiber, OA: Optical Amplifier, WDM Rx: Wavelength Division Multiplexer Receiver, BER: Bit Error Rate, OS- 

Optical Spectrum (color online) 
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The signals from the SMF fed to the Optical amplifier 

for amplification with a gain of 20 dB.  Further, the signal 

transmit through Dispersion compensation fiber (DCF) to 

avoid FWM losses. Then amplified signal transmit through 

the Dispersion compensation fiber of length 20.93km. The 

DCF consists of attenuation coefficient of 0.2 dB/km, 

differential group delay 3 ps/km and PMD coefficient 0.01 

ps/ (km)^0.5. In the receiving end, the WDM 

demultiplexer receives the filtered signal from DCF for the 

demultiplexing signals. The demultiplexed signal transmit 

through photodetector for converting light into an 

electrical signal with dark current 10 nA, thermal power 

density 100e-024 W/Hz, and PIN Responsivity 1 A/W. 

The electrical signal transmitted through the Bessel LPF 

and received at the BER analyser. 

The parameters such as optical gain, input power, and 

effective core size of optical fiber, channel spacing, data 

rate, and modulation format with different duty cycles 

vary to identify each parameter’s optimized values. The 

iterations are performed through the OptiSystem.14 for 

FWM mitigating factors. BER analyser and optical 

spectrum analyser measures the values from simulations. 

Furthermore, the above-measured dataset is considered a 

trained dataset to regression controller, in which regression 

calculations are performed and provide R-values. The 

level of correlations are analysed through R-values that 

presents correlations among the FWM influencing 

parameters. Through this regression controller, 

mathematical equations are generated based on the dataset. 

We are generated data set from 100 simulative iterations 

by randomly varying the parameters, which influences 

FWM nonlinearities, and applied into a regression 

controller for efficient analysis of each parameter. This 

regression controller performs supervised regression 

learning and identifies the parametric values and their 

level of influencing FWM. These trained datasets are 

considered as input to the computer-generated regression 

controller.   

 

 

4. Reconstruction of DWDM design 
 
Fig. 2 presents reconstruction design of DWDM for 

parametric analysis. This is structured by analyzing 

linking, input, and output parameters discussed in the 

simulation setup.  Reconstructed DWDM (R-DWDM) 

consists of independent input parameters such as data rate, 

channel spacing, input power, and modulation format. The 

dependent output factors in DWDM are Max Q-factor, 

Min BER, noise power, and OSNR that mainly mitigates 

FWM. More specifically, we train the proposed DWDM 

system to identify the FWM influencing parameters 

through a trained dataset, which is retrieved from various 

iterative simulations and performs regression learning.  

 
 

Fig. 2. Reconstruction schematic of Regression-based DWDM modeling (color online) 

 

 

In the training procedure, we used a dataset obtained 

from "N" number of simulations and their associated 

FWM influencing (parameters) traces, where these traces 

serve as input parameters (to methodology), and the 

received outputs are compared with the (known) predicted 

dataset. Further, it allows the system to learn the DWDM 

system's structure and reconstruct itself to identify the 

factors, reducing FWM problem using R-values and its 

correlation levels obtained through mathematical 

calculations in advance. In regression model controller, 

DWDM field trial iterations are performed for different 

combinations of independent and dependent parameters 

and identify the strong correlation between the parameters 

through R-Value 0.8. The reconstructed DWDM system is 

used to predict crucial dependent FWM mitigating factors 

and analyze the effects of various FWM influencing 

parameters linked in the simulation setup.  
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In DWDM light path computation, the regression 

model controller is trained based on user requirements. 

The R-DWDM design is to tune the parameters such as, 

channel spacing, bit rate, input power and optical gain 

after analyzing the behaviour of FWM according to the 

variations in the parameters. A trained data set is obtained 

from field trials of optical DWDM network comprises 'N' 

number of samples of the independent parameters and the 

corresponding dependent mitigating factors. DWDM 

configuration and monitoring database retrieve dataset 

from simulation setup and processed into the trained 

database section, which identifies and performs FWM 

influencing parametric analytics. The proposed Regression 

modeling develops the customized design of the DWDM 

system to meet real field user requirements  

As we discussed in the simulation method, this 

method enables identifying FWM influencing parameters 

even from their low OSNR, Q-factor, signal and noise 

power. However, effective implementation of this method 

requires training the reconstructed DWDM system with 

more iterations, which consumes more time and introduces 

run time errors that affect system performance. To 

overcome this problem, we modify the learning procedure 

into a combination of supervised and unsupervised 

training. In Supervised Learning, the DWDM system is 

trained using a labelled dataset, which is already defined 

with optimized values to mitigate FWM. This labelled 

dataset can be compared with the training data set that can 

be obtained through N number of iterative simulations 

using design software. This learning approach learns from 

the training data and predicts the level of the outcomes for 

a futuristic dataset. Supervised learning approaches allow 

the system to produce and collect the data from previous 

experimentation runs. Furthermore, it helps to optimize the 

performance of the proposed system using the previous 

trained dataset to meet the real world requirements avoid 

the FWM issues. 

 Unsupervised learning approaches work with 

unlabelled dataset and it does not require any supervised 

approaches to monitor the system performance. In 

addition, we need to train the system to achieve optimized 

values of FWM mitigating factors as mentioned in a real 

time environment. Moreover, unsupervised learning 

approach helps to perform complex processing tasks, 

which involve multiple system parameters that are 

influential in the optimizing process of FWM issues. 

Unsupervised learning approaches help to analyze all the 

patterns in an observed dataset, and identify the features, 

which finally help to categorize the level of correlation. 

Since the experiment is performed in the real field 

environment, all the input parameters are analyzed and 

labelled using supervised learning algorithms.  

In this research paper, both supervised and 

unsupervised learning approaches are discussed. 

Supervised learning helps in performing regression model 

controller and unsupervised learning helps to find out the 

grouping and associated level of correlation. In this 

procedure, prediction of FWM influencing parameters 

based on R-DWDM is trained on the simulated data. Here, 

the supervised regression procedure uses the previous 

Computer simulated dataset to help the R-DWDM system 

learn and identify FWM influencing parameters and 

improve system performance.  

Moreover, the unsupervised training makes the 

proposed R-DWDM more specific in FWM problem 

identification. The combined procedure makes this method 

feasible and avoids a huge "N" number of iterations for the 

system during it’s training stage. Furthermore, the 

unsupervised technique can be performed through the 

computer-simulated trained dataset. Finally, the 

reconstructed R-DWDM design is used to identify the 

FWM influencing parameters, determines the level of 

correlation for factors such as, signal and noise power, Q-

factor, eye height to reduce FWM, and enhances system 

performance. 

 

Fig. 3. DWDM Regression model with R-Values 



464                                                                    K. Venkatesan, A. Chandrasekar, P. G. V. Ramesh 

 

This trained data set can be avoided after the learning 

process since the predictions to corresponding new 

independent parameters are computed only through the 

regression model controller learned parametric dataset. 

During the analyses, the relation between the various 

parameters, FWM and its impacts over the DWDM 

channel capacity and bandwidth stabilization is modeled 

through regression controller. The regression controller 

performs regression analysis to identify the dependent and 

independent parameters for an effectual DWDM output in 

the real field factors to mitigate FWM. The reconstructed 

DWDM model minimizes marginal error values based on 

a trained dataset of FWM influencing parameters.   

Fig. 3 shows the calculations perform through 

regression modeling. For example, in 16-channel, the 

equation is                            
(          )          and R has 0.9447. Now the 

above equation studies the relation between the output 

signal power and input power through R-value. The R-

value with 0.9447 shows the strong relationship between 

the input power and output signal power whereas, 

               (           )           and has R-

value 0.4243 and proves less relationship between input 

power and output signal to noise ratio. Furthermore, the 

calculations for 32 and 64-channel configurations for 

various influencing parameters are also performed 

similarly, and correlations are observed through R-value.  

 

 

5. Parametric discussion 
 

Optimization of FWM nonlinear effects in DWDM 

system needs to be prioritized for enhancement of system 

performance. In this parametric analysis, FWM 

influencing parameters are fixed and linked to the DWDM 

system, which computes an output mitigating factor and 

allows the reconstructed DWDM system to predict the 

dependent factors' values based on a new set of optical 

input parameters. In this section, simulation for different 

configurations of the DWDM system with various 

arbitrary parameters is developed to understand the 

characteristics of FWM. An intensive study is carried out 

to identify and characterize FWM issues with multiple 

factors. The influence of FWM is clearly understood by 

analyzing factors such as Q-factor, BER, output signal and 

noise power, and OSNR.  

 
Fig. 4. Eye-diagram characteristic of varying (a) Input power and (b) Channel Spacing in DWDM system 
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Fig. 4 shows the eye diagram characteristic of varying 

input power and channel spacing, which leads to 

understanding their influence in FWM fiber nonlinearities.  

From the eye diagram, as shown in Fig. 4, results are 

observed for different channel sizes of a DWDM on an 

output spectrum analyzer. The iterative calculations for 

factors such as Q-factor, BER, and eye height understand 

the significant changes in dispersion. Lowering input 

power decreases output signal power, and hence OSNR 

decreases. From this analysis, lowering the transmitter 

input power reduces the FWM marginally.  When input 

power goes low, there will be a prominent degradation of 

BER, eye height, and Q factor. From the estimated R-

values, it is learned that a linear relationship exists 

between the number of channels in a system and output 

signal power, noise power, and eye height. The 

relationship is inverse for factors such as Q-factor and 

OSNR.  
 

 

Fig. 5. Eye-diagram characteristic of varying (a) Optical gain and (b) Duty cycle in DWDM system  

 

 

Channel spacing has an inverse proportionality 

relationship with the factors influencing FWM. Increasing 

the channel spacing minimizes the FWM effect and 

produces high BER and low Q-factor. The higher the 

number of channels, the higher is the interference between 

adjacent channels and results to elevate FWM issues. Low 

channel spacing in DWDM systems decreases Q-factor, 

increases noise power, and adversely influences OSNR. 

From the eye diagram, it is observed that lower channel 

spacing with high input power can accommodate more 

channels but at the cost of distorted eye characteristics. 

This validates the presence of more FWM effects are 

observed at narrow channel spacing (25GHz) and requires 

high considerations in a DWDM system. From the 

analysis, it can be studied that increasing channel spacing 

correlates positively to factors such as output signal 

power, Q-factor, and eye spectral characteristics resulting 

in reduced FWM. Increasing channel spacing will reduce 

noise power that will directly create a positive impact over 

OSNR. Fig. 4 shows the eye diagram characteristic for the 

factors obtained with different channel spacing for a 64- 

channel. It can be observed that the eye height is better 

when the channel spacing of 100GHZ. This results in a 

better Q-factor, but this is a trade-off parameter and needs 

to be decided based on the system requirements.  

Fig. 5 shows the eye diagram characteristic of varying 

optical gain and Modulation format with duty cycle, which 

leads to understanding their influence in FWM fiber 
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nonlinearities.  Optical gain and output signal power are 

directly proportional factors that increase gain and good 

spectral characteristics and hence reduce FWM. This 

comparative study shows that gain of optical fiber varies 

from 20dB to 40dB, which determines the FWM problem 

in Optical DWDM system. 

Detailed analysis of FWM nonlinearities using the 

regression controller improves higher optical gain, signal 

power, and provides a higher correlation to output signal 

power and noise power. The power of eye spectrum 

characteristics resulting in excellent eye-opening. It shows 

from the regression tabulation that an increased number of 

channels deals with the higher data rate, results in high 

FWM, and affects Q-factor for different optical gain 

values. From eye diagram spectral characteristics, it is 

observed that an increase in optical gain, which improves 

the power level of the DWDM spectrum, leads to a higher 

Q-factor along with dispersion effect. The dispersion 

effects introduce pulse broadening that lowers the Q-

factor. Other parameters, such as output signal power, 

noise power, OSNR, and power spectral eye 

characteristics, are improved when the optical fiber's gain 

increases.  

In this discussion, the modulation format changes 

from NRZ to RZ format and duty cycle is varied from 0.5 

to 0.25. RZ-modulation format with 0.3% duty cycle 

provides very low BER and high Q-factor of 93.6647.  

This validates that for more channels with RZ modulation 

format and low duty cycle provides better results in-terms 

of Q- factor, BER. Spectral characteristics in eye diagram 

show minimum BER, leading to absolute data 

transmission, achieving very good Q-factor and increased 

eye height. This analysis concludes that DWDM system 

design with RZ modulation and low duty cycle provides a 

better reduction of FWM. Furthermore, it is also observed 

that increasing the duty cycle will lead to higher OSNR 

and affects the Q-factor of the DWDM system, which 

introduces more pulse broadening. 
 
 

 
 

Fig. 6. Eye-diagram characteristic of varying (a) Bit rate and (b) Effective core size of an optical fiber in DWDM system 
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Fig. 6 shows the eye diagram characteristic of varying 

bit rate and effective core size of an optical fiber, which 

leads to understand their influence in FWM fiber 

nonlinearities.  In this simulation, Bit rate is varied from 

2.5Gbps to 10Gbps. Increasing bit rate, introduces more 

BER, which directly causes more dispersion in DWDM 

system. Nonlinearity factors such as noise power and 

OSNR are enhanced due to dispersion in DWDM system, 

resulting in decreased Q-factor. This analysis observed 

that noise power and OSNR show lower impact than the 

other factors such as output signal power, Q-factor, and 

Eye height characteristic. Since higher the number of bits 

transmitted for more channels with adequate channel 

spacing, i.e. 100GHZ, it will reduce noise power and 

OSNR produces excellent spectral characteristics. From 

Fig. 6, the Eye-spectral characteristic validates that a 

higher bit rate will introduce more noise in the DWDM 

system and hence reduces Q-factor. Furthermore decreases 

eye-height with more pulse broadening.  

FWM characteristics are inversely proportional to the 

core size. From the simulation results, the enlarged core 

size of an optical fiber degrades FWM. By performing 

iterative analysis for different channel simulations, an 

increase in the effective core area (Aeff) decreases light 

intensity inside the optical fiber and degrades the FWM. 

An increase in LEAF of an optical fiber shows excellent 

eye-opening and achieves a narrow pulse. With adequate 

eye–height, the maximum Q factor of 27.0447 is achieved 

for a 32-channel DWDM system with 160um core size.  

 

 

6. Comparison of simulated and predicted  

     results 

 

This section compares simulation and predicted 

results for the regression model controller using the 

regression algorithm. This leads to understanding FWM 

nonlinearity characteristics, identifies the influencing 

parameters, and provides correlations to their mitigating 

factors. The correlation factors will study the influencing 

parameters of FWM and find the level of input values for 

influencing parameters that reduce FWM. The analysis is 

carried out to identify and characterize FWM issues with 

multiple factors such as Q-factor, BER, output signal and 

noise power, and OSNR.  

Regression model is an analytical method, which 

helps to study and find the relationship between the 

continuous variables. Here the linear relationship between 

FWM influencing parameters (X) and their corresponding 

mitigating factors (Y) are studied through regression 

model controller. The equation for the regression model is 

mentioned in the Fig. 3. Here, the mitigating factors such 

as Q-factor, noise power, eye-height, and signal power are 

considered as an output variable (Y) and FMW influencing 

parameters such as input power, channel spacing, data 

rate, and duty cycle are considered it as input variable (X). 

The regression intercept coefficient m is calculated from 

the regression algorithm through trained dataset. 

From the regression controller, R-values are 

calculated, which provides the correlation and shows how 

the factors such as BER, OSNR, Q-factor, spectral 

characteristics are related to the arbitrary parameters such 

as, optical gain input power, bit rate, channel spacing, duty 

cycle and  core size of optical fiber. Henceforth the term 

"factors" is used for max Q-factor, minimum BER, output 

signal power, noise power, and OSNR, and the term 

"parameters" is used as optical gain, input power, bit rate, 

channel spacing, duty cycle, and core size of optical fiber. 

The calculated R-value and the correlations are classified 

as shown in Table 1. 

 

Table 1. Correlation levels of estimated R-values 

 

S.No R-value  Level of 

Correlation 

1.       High 

2.          Moderate 

3.           Low 

4.           Very low 

5.                       No 

 

 

More than 100 Iterative simulations are run in this 

setup by randomly varying parameters for each of the 

different factors and calculated the R-value through 

regression modeling.  For example, a simulation setup for 

a 64-channel DWDM system is developed in OptiSystem. 

FWM influencing (Input independent) parameters such as 

Channel spacing varies from 25 GHz to 100 GHz, and 

results are observed for the dependent factors. Results are 

tabulated as in Table 2. 

 

 
Table 2. Simulated dataset of 64-channel for regression 

modeling under different channel spacing 

 

Channel 

spacing 

(GHz) 

Signal 

Power 

(dBm) 

Noise 

Power 

(dBm) 

OSNR 

(dB) 

Max Q- 

factor 

25 11.17792 2.357671 8.820248 2.55866 

50 11.16735 -0.5234 11.69075 52.187 

75 11.1587 -0.46419 11.62289 76.8309 

100 11.16089 -39.4667 50.6276 85.5012 

 

 
The regression equation is developed for the R-

DWDM system based on Table 2. The channel spacing of 

25 GHz for 64 channel has -1.251×     × (Channel 

spacing) + 11.2381 and R-value 0.8943. From the Table 2, 

the channel spacing and output signal power are correlated 

with the above equation. The relationship between channel 

spacing and output signal power is strong because R-value 

is 0.8943. The regression model equation applied for 

various channel spacing, and output signal power to 

predict the results without simulation, and the same is 

shown in Table 1 as predicated value. Similarly, the 

predicted value is also verified for accuracy after 
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simulating the same parameter, which is given as an input 

to the regression equation. The R-DWDM design for 

identifying and reducing FWM issues involves two 

training process stages. In the first procedure, we are 

training the DWDM system to identify the FWM 

influencing parameters using supervised regression 

learning on a trained dataset created for the training 

purpose. In the Second method, we use the proposed R-

DWDM system to overcome FWM issues after being 

trained by iterative data. To achieve that, we perform an 

unsupervised training stage procedure, which learns to use 

a computer-generated dataset and measures OSNR, Q-

factor, BER, Signal, and noise power to reduce FWM. In 

the first procedure, which uses a simulation-generated 

dataset for training, the regression modeling is performed 

for various parameters. Through regression, we predict the 

values of OSNR, Q-factor, BER, signal, and noise power, 

which determines the power level of FWM, and identifies 

their mitigating level. This shows that the R-DWDM is 

trained on experimentally measured data to identify the 

measurements of FWM influencing parameters and 

determine the marginal values to reduce FWM. However, 

this requires more than "N" number of iterations in the 

training stage. In the second method, the problem can be 

solved through combining the regression learning from 

simulated data with an unsupervised procedure, here we 

developed a mathematical relationship between the 

dependent and independent parameters and obtained R-

value. We trained the R-DWDM system to predict the 

values of Q-factor, OSNR, BER, eye height 

characteristics, signal and noise power without performing 

any iterations through these R-values and mathematical 

calculations. As shown in Fig. 2, the R-DWDM system 

was trained using a combination of these procedures and 

identifies better values of FWM influencing parameters to 

reduce FWM issues.  Using both procedures together, 

supervised regression trains the DWDM system to identify 

the values and deal with user requirements. The 

unsupervised method trains the R-DWDM system to 

determine the values of OSNR, Q-factor, BER, eye height 

characteristics to reduce FWM effects. Furthermore, we 

observed that the unsupervised method could not perform 

well without the previous one i.e., supervised regression 

learning. Fig. 7 shows the comparison of simulation and 

regression-based predicted results for different 

configurations of the R-DWDM system. Considering the 

larger dataset, which retrieves from regression model and 

an iteration results from conventional methods, it has a 

greater impact on the R-DWDM system design, which is 

illustrated in Fig. 2.  

 

 

 

We use the regression-based machine learning method 

to optimize the FWM influencing parameters and get the 

optimal FWM mitigating factors' optimal value through R-

DWDM design when the R-value reaches the minimum. 

To understand the relationship between FWM 

influencing parameters and FWM mitigating factors such 

as OSNR, Noise power, received power, and Q-factor to 

estimate accuracy, we treat the more sample data 

according to the number of iterations. Through the 

conventional simulations and Regression model based 

dataset by converging the average estimation of mitigating 

factor values are calculated and mapped with simulated 

and prediction results graph, as shown in Fig. 7. The 

following simulation results are obtained by the random 

selection of FWM influencing parameters. The training 

set, testing data perform cross-validation, obtain the 

average results to ensure the proposed R-DWDM system 

model fits and trains the test data well. 

From the predicted and simulated results, the 

parameters such as optical gain, input power, data rate, 

channel spacing, and the optical fiber's core size are highly 

influencing FWM in DWDM design. It can be confirmed 

through the obtained higher correlation level of these 

parameters for various mitigating factor such as Q-factor, 

OSNR, noise power and received power. In duty cycle 

calculations, which have a lower impact on FWM issues 

and achieves low correlation level and deviates from the 

prediction plot. From Fig. 7, it is observed that except duty 

cycle remaining parameters achieve the high-level 

accuracy with regression-based predicted results and 

simulated results. It is considered that the equal number of 

sample training data set for all the parameters, which 

influence FWM and determines the accuracy level of the 

predicted results. It can be observed that the complexity of 

the DWDM system and modelling time depends on the 

number of FWM mitigating factor with the sample-trained 

dataset.  
Therefore, regression modelling predicts the FWM 

influencing parameter with high accuracy under the 

complex DWDM structure compared with regular 

iterations.  The low R-value is obtained for duty cycle 

calculation, which does not lie in the estimation level and 

shows high deviations in their simulated and predicted 

regression results. In the future, we investigate more real 

time challenges in FWM analysis using the proposed R-

DWDM design. Initially, we increase the methods and 

components involves in FWM analysis to generate 

mathematical modelling through regression learning, 

which includes as many spectral characteristics in the 

trained dataset. Besides, the proposed system is to be 

trained through many iterations, which leads the system to 

achieve extreme accuracy.    
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Fig. 7. Simulated vs Predicted results for (a) input Power (b) channel Spacing (c) optical Gain (d) duty cycle (e) data rate  

and (f) core Size (color online) 

 

 

Thus, the proposed system achieves the FWM 

optimization by designing the DWDM system with -

10dBm as input power, 50GHz as minimal channel 

spacing, RZ modulation format with 0.3%duty cycle, 

10GBps as higher data rate with 80um as effective core 

area. At -10dBm input power optimized Q-factor of 

24.2418 and BER of 3.18E-130 is achieved. Optimized 

minimal channel spacing of 50GHz provides Q-factor of 

52.187 with very low BER data transmission. The 

proposed R-DWDM with 20dB optical gain obtains 

optimized Q-factor values of 33.8541 with Minimum BER 

of 1.54E-251. Furthermore, RZ modulation format for 

long haul transmission achieves Maximum Q- factor of 

93.6647 and supports error free transmission. In the 

presence of 10gbps data rate the proposed system design 

achieves Q- factor of 28.5337 and Min. BER 2.18E-179. 

Choosing effective core size area as 80um provides Q-

factor of 24.3447 with Min. BER of 2.59E-131 and shows 

the proper eye opening as shown in the eye characteristic 

diagrams. 

 

 

7. Conclusion 
 

In this work, we presented a supervised and 

unsupervised regression learning approach to reconstruct 

(f) 

(a) (b) 

(c) (d) 

(e) 
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the fiber optic DWDM system to reduce nonlinearities 

such as FWM and high signal distortion with ICI. 

Parameter-based simulation is performed, and the obtained 

results are analyzed using supervised and unsupervised 

machine learning approaches. The supervised regression 

algorithm generates established correlations among the 

parameters and provides a firm idea of handling the FWM 

issues. Trained datasets are developed through supervised 

regression learning, which identifies the independent 

optical parameters such as Modulation format, optical 

gain, bit rate, channel spacing, effective core size of an 

optical fiber, input power, and the dependent factors such 

as Max Q-factor, Min. BER, noise power, output optical 

power based on natural constraints. Finally, an 

unsupervised learning approach is presented, using the 

trained dataset from supervised learning and improvising 

the proposed system to identify the FWM problem. Thus, 

unsupervised training makes the proposed R-DWDM 

system accurately predict Q-factor, OSNR, signal, and 

noise power levels. It is mandatory to consider all these 

parameters to achieve optimized Q-factor, Min. BER, and 

required output signal power. However, the parameter 

values are defined according to the practical requirements 

of data transfer in day-to-day applications. In general, 

repeated iterations of the simulation need to be performed 

for reduced noise, high signal distortion, and monitors 

FWM. These iterative simulations consume more run time 

and are prone to human errors, which can be avoided 

through supervised and unsupervised approaches.  

Comparing the predicted and simulated results show that 

the reconstructed DWDM system's accuracy level 

provides a real trade-off between various parameters that 

influence FWM nonlinearities in the fiber optic R-DWDM 

system. Furthermore, the future scope of this research 

paper will be an extension with combinations of various 

parameters, which influencing FWM with more dependent 

and independent variables through multiple regression 

methods. 
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